Patch Propagation

Holistic Software Security

Aravind Machiry

Importance of Patch Propagation

L_I Vulnerability ’*‘*
-l:i- Detector b ’h‘ﬁ

Okay, we found vulnerabilities. Now what?

;:[.

Importance of Patch Propagation

Okay, we found vulnerabilities. Now what?

&

g

These vulnerabilities need to be

g ~"~ .

L_I_—.n_ Vulnerability 1’%’@
Detector e

Source)M@

Code | '

Importance of Patch Propagation

Source
Code

5= Vulnerability
L_I'n' Detector 1

Okay, we found vulnerabilities. Now what?
These vulnerabilities need to be

Is this enough?

Importance of Patch Propagation

Okay, we found vulnerabilities. Now what?

. , m These vulnerabilities need to be patched.
Vulnerability | M
|=-—' u N .
i o e © VA Patched software need to be pushed to machines.
Detector ° AT, D
.)*‘J N
Source @_, P
Code ’

Importance of Patch Propagation

o Okay, we found vulnerabilities. Now what?

el
¢

o These vulnerabilities need to be patched.
|'—| Vulnerabilit e A X Y
fn_ y @-E:{“xi\/\ Linaca Patched software need to be pushed to machines.
Detector & % o) .::|
8835? e Patches need to be pushed to related repositories.

. 1 \ -
. . ’ \‘\
S / N
. / AN Ve
- .@ R4 >N
) - ee®

Importance of Patch Propagation

e Software Diversity: Different versions of same software. Linux/\ Mainline 4.4

Lin_tgé LTS
44y

e Code clones: Same code used in different platforms. 'ﬁ' &4

o E.g., Linux code in Android, Mac OS code in iOS, etc. A
Qualcomw 4.4 Mainline U "
Qualcommw 4.4 Stable \@ »
G XIAOMI Mi 6 \@——>

@ Fork O Patch \ Patch propagation

* An Investigation of the Android Kernel Patch Ecosystem

Delays in Patching

S
&
o) e A
(%) Q xQ
2° A oS 2
o“&\e \35@(\ \0966 @\0(\% 0‘5\%9&)\8‘\0% & ¢
; 2 O Q G QO
oS e & e e el e
'\o(\\‘ \\\\-\; \\\\-\; Q\o\;«\ (\0‘6‘0 \'\10\(\ Q\O\;
\'\06\' & O @° o o olo‘N\ NS P
PQQ Q\)\(\ el@ qo\“ A ?j&) N o Y ?a\c’
L [T1 1 X
tv td te1 t0 (o] tez tm t90% t95% ta
Median
_time-to-patch
Patching i
| delay Patch deployment |
o » e |

*The Attack of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching

Delays in Patching

Missed Patches

. Patch delay [days] Vendor e 2015 Samples*
Different vendors have different practices and priorities. PR T G oy
Immediately 0 Sony 0.2to1 0.2to1l lots
. . 0 Nokia 02to1 02tol lots
Delay varies across different vendors. B oo 0w s
Within 2 weeks 12 LGE 0t00.2 0t00.2 lots
14 Samsung 0to0.2 0to 0.2 lots
15 Motorola 0t00.2 02tol lots
15 BQ 02to1 02tol many
15 e 2to4 0to0.2 lots
16 Oppo 1to2 few
18 Wiko 2to4 0to0.2 few
18 Verizon 0.2to1 0t00.2 few
Within 1 month 21 Lenovo 0t00.2 few
21 TCL 2to4 02tol few
23 Asus 0.2to1 02tol many
25 OnePlus 0t00.2 02tol many
26 Vivo 1to2 02tol lots
30 htc 1to2 1to2 many
31 Xiaomi 0.2to1 0t00.2 many

* https://www.srlabs.de/bites/android-patch-gap-2020

Security Patch Propagation

e Propagation of security patches should be done ASAP:
o Toprevent attacker from exploiting it.
o Ensure that products are secure.

o Toavoid negative publicity.

e How to manage propagation of security patches?

BN,

Common Vulnerabilities and Exposures

Security Patch Propagation

B

&) &

Security Patch Propagation

L

B

A
&) mE

Le

Security Patch Propagation

B

3 Lo
E

@ ©

Security Patch Propagation

PN
E)

Security Patch Propagation

G

‘\x\\

G

Problem 1: There could be delay in applying patches.
(E.g., Testing after applying patches)

Security Patch Propagation

. I - o 2016 v
Wonder where those 2013/2014 Qualcomm vuins are coming from?

qualcomm.com/news/ong/2015/... Why are they in a bulletin *now*?
RS D

Enter the Snapdragon
Here's the latest in a series of product-security related

@j posts...

\éﬁi

Security Patch Propagation

Problem 2: Security Patches may not have an assigned
CVE number.

Security Patch Propagation

Prob

CVE.

L&

F\‘P[‘»lvu'\(] to @videolan and @MITREcoI p

So libEBML fixed a vulnerability in 1.3.6, but didn't
assign a CVE to it? And as a result, a fully-patched
Ubuntu 18.04 system provides a vulnerable 1.3.5
version?

2:16 PM - Jul 24, 2019 - Twitter Web App

L

I 1 IR Wi

Ined

Security Patch Propagation

Why there are at least 6,000 vulnerabilities without
CVE-IDs
Posted by Synopsys Editorial Team on Thursday, September 22nd, 2016

PrOb 2:16 PM - Jul 24, 2019 - Twitter Web A lned

CVE.........

PP

Security Patches with no CVE

VVVVVVV

VVVVVVV

= No A
@ CVE I '=|

VVVVVV

Security Patches with no CVE

VVVVVV

Security Patches with no CVE

VVVVVVV

VVVVVVV

VVVVVV

How are CVE numbers assighed?

e They need to be requested from CVE Numbering Authorities (CNA):
o Abittedious approach.
o Developers may underestimate the severity of a bug.

o OSS:Developers raising a pull request might not care about CVEs.

e Distributed Weakness Filing (DWF): New system for vulnerable IDs.

How can we handle this?

e Whatisthe problem?

o Identification of security patches is done manually by assigning CVE numbers.

o Can we identify security patches without CVE humbers?

Identifying Security Patches automatically

e Systematic approaches:
o Analyze the patch to determine the changes done by the patch => If changes are security related then =>
Okay.
m SPIDER => Based on syntactic analysis.
m SID => Based on semantics.

e Pattern based or ML approaches:
o Givenapatchsaythatitis asecurity patch.

SPIDER - Intuition

“Verification technique to automatically identify patches (safe patches) that do not
adversely affect the functionality of the program”.

Assumption: Most of the security patches are point fixes and do not hugely affect
the program functionality.

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

28

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

switch (dinput) {
case ...
case ..

+ case NEW_INPUT: do_something(); break;
case ..

- 4

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

switch (innut) {

This patch might break the program on “NEW_INPUT”

case .
+ case NEW_INPUT: do_something(); break;
case ..

- 4

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

e The patch should not allow new inputs into the program.

31

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

e The patch should not allow new inputs into the program.

if (a >= MAX_LEN) return -13 I

Safe Patch Should Not Affect the Functionality

e For all expected inputs:

o The output of the patched program should be the
same as that of original program.

e The patch should not allow new inputs into the program.

This is OKAY. We are restricting inputs (i.e., not allowing new inputs)

if (a >= MAX_LEN) return -13 I

Safe Patches Conditions

A Safe Patch should have:

e Non-increasing input space (C1): The patch should
not increase the valid input space of the program.

e Output equivalence (C2): For all the valid inputs, the
output of the patched program must be the same as
that of the original program.

34

Safe Patches at Function Level

For all functions affected by the patch:

if C1 and C2 holds = C1 and C2 hold for the entire
program.

35

Non-Increasing Input Space (Cl)

The patch should not increase the valid input space of a
function.

In other words, All valid inputs to the patched function (Fp)
should also be valid inputs to the original function (Fo).

for all inputs i : valid_input(i, Fp) — valid_input(i,
Fo)

36

Valid Inputs to a Function

e Invalid Inputs : Inputs that are treated as invalid by the
function i.e., Inputs that reach invalid exit points.

e Valid Inputs : Inputs that reach valid exit points.

Valid Inputs to a Function

e Invalid Inputs : Inputs that are treated as invalid by the
function i.e., Inputs that reach invalid exit points.

e Valid Inputs : Inputs that reach valid exit points.

int foo(unsigned a) {
if (a >= MAX_SIZE) {
return -1;

}

return 03

Valid Inputs to a Function

All inputs that can reach valid exit points : Identify Path
Constraints (PC) through Control dependencies.

int foo(unsigned a) Valid Exit Point:

if (a >= MAX_SIZE) { return 0
return -1;

} Inputs that can reach the

return 0; valid exit point:

) PC = I(a >= MAX_SIZE) I

Valid Inputs to a Function

vinputs(f) = V
PC(i) i € VEP (f)

Valid inputs (vinputs) of function (f) is the disjunction (_V) of the path constraint
(PC) of all valid exit points (VEP).

40

Verifying C1 on a Function

Patched function : Fp
Original function : Fo

vinputs (Fp) — vinputs (Fo)

41

Verifying Output Equivalence (C2)

For all the valid inputs, the output of the patched function
must be the same as that of the original function.

| € vinputs(fp): output(fp, i) == output(f ,i)

42

Verifying Output Equivalence (C2)

e Output of a function:
o Return value.

o Writes to non-local data, i.e., heap and globals.

o Function calls along with the arguments.

e Changes in Error handling code does not affect
output

43

Verifying Output Equivalence (C2)

e Output Depends on the Data flow path:

int bar(unsigned a) {
a = baz();

Data Path 1 (D1): if (a < 10) {
. a =b + 9;
(a < 10) 1s false 1
return aj;
}

44

Verifying Output Equivalence (C2)

e Output Depends on the Data flow path:

int bar(unsigned a) {
a = baz();

Data Path 2 (D2): if (a < 10) {
) a=>b + 9;
(a < 10) 1is true 1
return aj;
}

45

Verifying Output Equivalence (C2)

Y (Di, Oi) e output(Fp),

3 (Dj, Oj) € output(Fo) + (Oi == Oj) A
(Di—Dj)

46

int process_req(struct usr_req *req) {
void *buf;
size_t msg_sz;

- if(lreq) {

+ if(!req||!req->buff || req->len>MAX_MSG_SIZE) {
return -EINVAL;

}
msg_sz = req->len;
if(msg_sz % CHUNK_SZ) {
msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;

}
buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
if(buf) { .'

- if(lreq->buff) {
- return -EINVAL;
|
if(proc_from_user (buf + HDR_SIZE, req->buff, req->len)) {
i - kfree(buf);

return -EINVAL;
}
kfree(buf);
return 0;
}
return -ENOMEM;

Is this a Safe
Patch?

int process_req(struct usr_req *req) {
void *buf;

size_t msg_sz; Valid Inputs to Old Function
- if(lreq) {

return -EINVAL;

T N (!(req 1= 0)) *
msg_sz = req->len; Error Exit Points

if(msg_sz % CHUNK_SZ) {
msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;

} (buf = 0) A
buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);

if(buf) {

| - if(lreq->buff) {
- ~ return -EINVAL; I({(req->buff I= 0))
| I
if(proc_from_user (buf + HDR_SIZE reqg->len)) {
return -EINVAL; '
) S l(proc_from_user(buf +
kfree(buf) ; | Valid Exit Point HDR_SIZE, req->buff, reg->len)
return 03 (_/ |= O)
} !

return —ENOMEM;

int process_req(struct usr_req *req) {
void *buf;
size_t msg_sz;

return -EINVAL;

Valid Inputs to New Function

} T

msg_sz = req->len;

if(msg_sz % CHUNK_SZ) {

Error Exit Points

msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;

3
buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);

if(buf) {
if(proc_from_user (buf + HDR_SIZE,

| - kfree(buf);
return -EINVAL;

req->b

heo(buty; | Valid Exit Point

return 0;<?,///
}

return -ENOMEM;

rAq->len)) {

M

I'(Y(req != 0) || /(reg->buff != 0) ||
reg->len > MAX_MSG_SIZE) A

(buf 1= 0) A

I(proc_from_user(buf +
HDR_SIZE, reqg->buff, reqg->len)
I=0)

Convert Path Constraint to Symbolic Expression (Old Function)

Use same symbolic variables for unaffected program
variables.

Path Constraint (Old function): (ﬁeq = O))S%buf I=0) A%eq»buff I=
0)) A I(proc_from_user(buf + HDR_SIZE, reg->buff, reg->len) != 0))

vinputs (original) =(S1!=0) && (S2!=0) * (S3 !=0) * 1(S4 = 0)

50

Convert Path Constraint to Symbolic Expression (Patched Function)

Use same symbolic variables for unaffected program
variables.

Path Constraint (New function): (!F:(req 1=0) || {(reg->buff ==)I||
(57 reg->len > MAX_MSG_SIZE) A (buf != 0) » I(proc_from_user(buf +

HDR_SIZE, req->b%eq->len) I= O)

vinputs (patched) =(S1!=0)* (S3!=0) » (S6 <=S7) A~ (S2!=0) ~
1(S4 !=0)

51

Verifying Non-Increasing Input Space (Cl)

vinputs (patched) — vinputs (original)

((S1!=0) A (S3!=0) A (S6<=S7) A (S21=0) A 1(S4!=0)) — ((S1
1=0) && (S2 !=0) * (S3 1= 0) A I(S4 != 0))

(A% B)— (B)

52

int process_req(struct usr_req *req) {

void *buf;
size_t msg_sz;

return -EINVAL;
}
msg_sz = req->len;
if(msg_sz % CHUNK_SZ) {

msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;

3

buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);

if(buf) {

This statement affects output but it is
in error-handling block

return -EINVAL;

1

kfree(buf);
return 0;

}
return -ENOMEM;

SID: Another systematic technique

e Based onunder-constrained symbolic execution of original and patched program:
o Determine if patch prevents a security violation which is present in the original program.
o Basedon LLVM => Requires buildable sources.
o Better guarantees than SPIDER => Deeper reasoning.

Security Patch Identification: Requirements

e R1:Inreal world, we only have commit i.e., old file and new file:
o Thesystem should rely on only original and the patched file without additional information (e.g., commit
message, build environment, etc).
e R2:We want toidentify commits quickly and the system should be easy to deploy:
o Befast, lightweight and scalable.
e R3:Similar to vulnerability detection : No false positives, Okay with false negatives:
o False negatives: Misses identifying security patch => Current state.
o False positives: Incorrectly marks a patch as security patch => Wrongly propagate the patch.

SPIDER v/s SID

SPIDER

Works only with old file and new file.
Syntax based: Fast, lightweight and scalable.

Overly conservative: Misses many patches.

General: Function based => works for all C source files.

SID

Need entire build system => LLVM.
Semantic based: UC Symex, relatively slow.
Identifies most of the security patches.

Need to perform whole program analysis => Project based.

Pattern Based or ML approaches

e Intuition: Security patches have distinguishing features.
o Canwe use these features to identify security patches automatically?

Characteristics of security patches!

e Security patches are relatively small!!

1.0
0.8
0.6
[Ty
o
(©]
0.4
’.-" —— Security Fixes
0.2 . Median Per Repo
Security Fixes
== Bug Fixes
0.0 g
0 10° 10t 102

Number of Affected Functions (Log-Scaled)

CDF

/ — Security Fixes
J(" ... Median Per Repo
.7 Security Fixes
v == Bug Fixes
0° 10!

Total Number of Files Affected (Log-Scaled)

2

CDF

1.0

0.8

0.6

—— Security Fixes

Median Per Repo
Security Fixes

== Bug Fixes

10° 10t 102 103

Total Number of Line Changes (Log-Scaled)

* A Large-Scale Empirical Study of Security Patches

Characteristics of security patches!

e Security patches have a specific format!

1.+ Security_op(CV, ...)

2. Vulnerable_op(CV, ...)

* Precisely Characterizing Security Impact in a Flood of Patches via Symbolic Rule Comparison

ML Based Detection

e Needdataset.

e Feature engineering:
0 Code features
o Metadata features:

m Num of files, functions, words in commit message, etc.

Security Patch Detection by Co-training

e Needdataset => Start from initial dataset, build a model and generate more..repeat.

e Feature engineering:
o Code features: Num of pointers modified, if/else, loops, sizeof, etc

o Metadata features: Words in commit message.

* Learning to Catch Security Patches

Security Patch Detection by Co-training

e Initial Dataset

Positive data: Negative data: Unlabeled data:
security patches non-security patches Don’t know yet if
security patches
security pure bug-fix code-enhanc.
patches patches patches unlabeled
== patches
.’ “ > N -~
Explicitly relat}-z%" Explicitly related to a bug in a tracking Commit logs checkinb:hN
toa CVE system and not related to security Not related to bug, security, ...

* Learning to Catch Security Patches

Security Patch Detection by Co-training

Co-training

View A
(e.g., only code diffs)
LP

Co-Training Algorithm
with Code features

SVM binary
Classifier h1

View B
(e.g., only commit logs)

Co-Training

pseudo-labeled
instances by h2

Al

with Text features

gorithm

-
- -
_ -
—
pseudo-labeled
instances by h1
> S
—————————— > PoolU @
M samples

Unlabeled patches
upP

* Learning to Catch Security Patches

Patch Propagation: Final Remarks

e Veryimportant, yet ignored problem.
e Practicality is very important => Implement your technique as a GitHub Webhook.
e Should have almost no false positives.

e Mailinglists => Unexplored area!

