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Okay, we found vulnerabilities. Now what?

These vulnerabilities need to be patched.

Patched software need to be pushed to machines.

Patches need to be pushed to related repositories.
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* An Investigation of the Android Kernel Patch Ecosystem

● Software Diversity: Different versions of same software.

● Code clones: Same code used in different platforms. 

○ E.g., Linux code in Android, Mac OS code in iOS, etc.



Delays in Patching

* The Attack of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching



Delays in Patching

* https://www.srlabs.de/bites/android-patch-gap-2020

Different vendors have different practices and priorities.

Delay varies across different vendors.



● Propagation of security patches should be done ASAP:

○ To prevent attacker from exploiting it.

○ Ensure that products are secure.

○ To avoid negative publicity.

Security Patch Propagation

● How to manage propagation of security patches?
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Security Patch Propagation

Problem 1: There could be delay in applying patches. 
(E.g., Testing after applying patches)
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Problem 2: Security Patches may not have an assigned 
CVE number. 
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● They need to be requested from CVE Numbering Authorities (CNA):

○ A bit tedious approach.

○ Developers may underestimate the severity of a bug. 

○ OSS : Developers raising a pull request might not care about CVEs.

How are CVE numbers assigned?

● Distributed Weakness Filing (DWF): New system for vulnerable IDs.



● What is the problem?

○ Identification of security patches is done manually by assigning CVE numbers.

○ Can we identify security patches without CVE numbers? 

How can we handle this?



● Systematic approaches:
○ Analyze the patch to determine the changes done by the patch => If changes are security related then => 

Okay.

■ SPIDER => Based on syntactic analysis.

■ SID => Based on semantics.

● Pattern based or ML approaches:
○ Given a patch say that it is a security patch.

Identifying Security Patches automatically



“Verification technique to automatically identify patches (safe patches) that do not 

adversely affect the functionality of the program”.

Assumption: Most of the security patches are point fixes and do not hugely affect 
the program functionality.

SPIDER - Intuition
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Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the 
same as that of original program.
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Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the 
same as that of original program.

switch (input) {
      ...
      case ...
      case …
 +    case NEW_INPUT: do_something(); break;
      case …
      ...
}

This patch might break the program on “NEW_INPUT”
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● The patch should not allow new inputs into the program.
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if (a >= MAX_LEN) return -1;
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Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the 
same as that of original program.

● The patch should not allow new inputs into the program.

if (a >= MAX_LEN) return -1;

This is OKAY. We are restricting inputs (i.e., not allowing new inputs)
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A Safe Patch should have:

● Non-increasing input space (C1): The patch should 
not increase the valid input space of the program.

● Output equivalence (C2): For all the valid inputs, the 
output of the patched program must be the same as 
that of the original program.

Safe Patches Conditions
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For all functions affected by the patch:
 if C1 and C2 holds ⇒ C1 and C2 hold for the entire 

program.

Safe Patches at Function Level
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The patch should not increase the valid input space of a 
function.

In other words, All valid inputs to the patched function (Fp) 
should also be valid inputs to the original function (Fo).

for all inputs i : valid_input(i, Fp) → valid_input(i, 
Fo) 

Non-Increasing Input Space (C1)
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Valid Inputs to a Function

● Invalid Inputs : Inputs that are treated as invalid by the 
function i.e., Inputs that reach invalid exit points.

● Valid Inputs : Inputs that reach valid exit points.
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Valid Inputs to a Function

● Invalid Inputs : Inputs that are treated as invalid by the 
function i.e., Inputs that reach invalid exit points.

● Valid Inputs : Inputs that reach valid exit points.

int foo(unsigned a) {
if (a >= MAX_SIZE) {

return -1;
}

    ..
    return 0;
} 
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Valid Inputs to a Function

All inputs that can reach valid exit points : Identify Path 
Constraints (PC) through Control dependencies.

Valid Exit Point: 
return 0

Inputs that can reach the 
valid exit point:
PC = !(a >= MAX_SIZE)

int foo(unsigned a) {
if (a >= MAX_SIZE) {

return -1;
}

    ..
    return 0;
} 
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Valid Inputs to a Function

vinputs(f) = ∨  
PC(i)

Valid inputs (vinputs) of function (f) is the disjunction (∨) of the path constraint 
(PC) of all valid exit points (VEP).

i ∈ VEP (f)
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Verifying C1 on a Function

Patched function : Fp
Original function : Fo

vinputs (Fp)  ⟶  vinputs (Fo)
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For all the valid inputs, the output of the patched function 
must be the same as that of the original function.

Verifying Output Equivalence (C2)

i ∈ vinputs(fp): output(fp, i) == output(fo,i)



● Output of a function:
○ Return value.

○ Writes to non-local data, i.e., heap and globals.

○ Function calls along with the arguments.

● Changes in Error handling code does not affect 
output

43

Verifying Output Equivalence (C2)



● Output Depends on the Data flow path:

44

Verifying Output Equivalence (C2)

int bar(unsigned a) {
    a = baz();

if (a < 10) {
a = b + 9;

}
    ..
    return a;
} 

Data Path 1 (D1): 

(a < 10) is false



● Output Depends on the Data flow path:

45

Verifying Output Equivalence (C2)

int bar(unsigned a) {
    a = baz();

if (a < 10) {
a = b + 9;

}
    ..
    return a;
} 

Data Path 2 (D2): 

(a < 10) is true
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Verifying Output Equivalence (C2)

 ∀(Di, Oi) ∈ output(Fp),  
  ∃ (Dj, Oj) ∈ output(Fo) ⊦ (Oi == Oj) ⋀ 
(Di→Dj)



int process_req(struct usr_req *req) {
   void *buf;
   size_t msg_sz;
-  if(!req) {
+  if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

   return -EINVAL;
   }
   msg_sz = req->len;
   if(msg_sz % CHUNK_SZ) {

   msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
   }
   buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
   if(buf) {
-    if(!req->buff) {
-    return -EINVAL;
-    }

   if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+    kfree(buf);

   return -EINVAL;
          }

   kfree(buf);
   return 0;

   }
   return -ENOMEM;
}
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Is this a Safe 
Patch?



Valid Inputs to Old Function

!(!(req != 0)) ^

(buf != 0) ^ 

!(!(req->buff != 0)) ^

 !(proc_from_user(buf + 
HDR_SIZE, req->buff,  req->len) 
!= 0)

int process_req(struct usr_req *req) {
   void *buf;
   size_t msg_sz;
-  if(!req) {

   return -EINVAL;
   }
   msg_sz = req->len;
   if(msg_sz % CHUNK_SZ) {

   msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
   }
   buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
   if(buf) {
-    if(!req->buff) {
-    return -EINVAL;
-    }

   if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
   return -EINVAL;

          }
   kfree(buf);

   return 0;
   }
   return -ENOMEM;
}

Error Exit Points

Valid Exit Point
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Valid Inputs to New Function

! (!(req != 0) || !(req->buff != 0) ||  
req->len > MAX_MSG_SIZE) ^

(buf != 0) ^ 

 !(proc_from_user(buf + 
HDR_SIZE, req->buff,  req->len) 
!= 0)

int process_req(struct usr_req *req) {
   void *buf;
   size_t msg_sz;
+  if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

   return -EINVAL;
   }
   msg_sz = req->len;
   if(msg_sz % CHUNK_SZ) {

   msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
   }
   buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
   if(buf) {

   if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+    kfree(buf);

   return -EINVAL;
          }

   kfree(buf);

   return 0;
   }
   return -ENOMEM;
}

Error Exit Points

Valid Exit Point
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Use same symbolic variables for unaffected program 
variables.

Path Constraint (Old function):  (!(!(req != 0)) ^ (buf != 0) ^ !(!(req->buff != 
0)) ^  !(proc_from_user(buf + HDR_SIZE, req->buff,  req->len) != 0))

vinputs (original) = (S1 != 0 ) && (S2 != 0) ^ (S3 != 0) ^ !(S4 != 0)

S1 S2 S3

S4

Convert Path Constraint to Symbolic Expression (Old Function)
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Use same symbolic variables for unaffected program 
variables.

Path Constraint (New function): (!(!(req != 0) || !(req->buff == 0) ||  
req->len > MAX_MSG_SIZE) ^ (buf != 0) ^  !(proc_from_user(buf + 
HDR_SIZE, req->buff,  req->len) != 0))

vinputs (patched) = (S1 != 0) ^  (S3 != 0) ^ (S6 <= S7)  ^ (S2 != 0)  ^ 
!(S4 != 0)

S1 S3

S2 S4

S6

S7

Convert Path Constraint to Symbolic Expression (Patched Function)
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vinputs (patched)  ⟶  vinputs (original)

((S1 != 0) ^  (S3 != 0) ^ (S6 <= S7)  ^ (S2 != 0)  ^ !(S4 != 0))  ⟶   ((S1 
!= 0 ) && (S2 != 0) ^ (S3 != 0) ^ !(S4 != 0)) 

(A ^ B) ⟶  (B)

Verifying Non-Increasing Input Space (C1)
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int process_req(struct usr_req *req) {
   void *buf;
   size_t msg_sz;
-  if(!req) {
+  if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

   return -EINVAL;
   }
   msg_sz = req->len;
   if(msg_sz % CHUNK_SZ) {

   msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
   }
   buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
   if(buf) {
-    if(!req->buff) {
-    return -EINVAL;
-    }

   if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+    kfree(buf);

   return -EINVAL;
          }

   kfree(buf);
   return 0;

   }
   return -ENOMEM;
}
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This statement affects output but it is 
in error-handling block



SID: Another systematic technique
● Based on under-constrained symbolic execution of original and patched program:

○ Determine if patch prevents a security violation which is present in the original program.
○ Based on LLVM => Requires buildable sources.
○ Better guarantees than SPIDER => Deeper reasoning.



Security Patch Identification: Requirements

● R1: In real world, we only have commit i.e., old file and new file:
○ The system should rely on only original and the patched file without additional information (e.g., commit 

message, build environment, etc).

● R2: We want to identify commits quickly and the system should be easy to deploy:
○ Be fast, lightweight and scalable.

● R3: Similar to vulnerability detection : No false positives, Okay with false negatives:
○ False negatives: Misses identifying security patch => Current state.

○ False positives: Incorrectly marks a patch as security patch => Wrongly propagate the patch.



SPIDER v/s SID

Works only with old file and new file.

Syntax based: Fast, lightweight and scalable.

Overly conservative: Misses many patches.

General: Function based => works for all C source files.

Need entire build system => LLVM.

Semantic based: UC Symex, relatively slow.

Identifies most of the security patches.

Need to perform whole program analysis => Project based.

SPIDER SID



● Intuition: Security patches have distinguishing features.
○ Can we use these features to identify security patches automatically?

Pattern Based or ML approaches



● Security patches are relatively small!!

Characteristics of security patches!

* A Large-Scale Empirical Study of Security Patches



● Security patches have a specific format!

Characteristics of security patches!

* Precisely Characterizing Security Impact in a Flood of Patches via Symbolic Rule Comparison



● Need dataset.

● Feature engineering:

○ Code features

○ Metadata features:

■ Num of files, functions, words in commit message, etc.

ML Based Detection



● Need dataset => Start from initial dataset , build a model and generate more..repeat.

● Feature engineering:

○ Code features: Num of pointers modified, if/else, loops, sizeof, etc

○ Metadata features: Words in commit message.

Security Patch Detection by Co-training

* Learning to Catch Security Patches



● Initial Dataset

Security Patch Detection by Co-training

* Learning to Catch Security Patches



● Co-training

Security Patch Detection by Co-training

* Learning to Catch Security Patches



Patch Propagation: Final Remarks

● Very important, yet ignored problem.

● Practicality is very important => Implement your technique as a GitHub Webhook.

● Should have almost no false positives.

● Mailing lists => Unexplored area!


