
Patch Propagation

Aravind Machiry

Holistic Software Security

Importance of Patch Propagation

Vulnerability
Detector

Source
Code .

.

.

Okay, we found vulnerabilities. Now what?

Vulnerability
Detector

Source
Code .

.

.

Okay, we found vulnerabilities. Now what?

These vulnerabilities need to be patched.

Importance of Patch Propagation

Vulnerability
Detector

Source
Code .

.

.

Okay, we found vulnerabilities. Now what?

These vulnerabilities need to be patched.

Is this enough?

Importance of Patch Propagation

Vulnerability
Detector

Source
Code .

.

.

Importance of Patch PropagationImportance of Patch Propagation

.

.

.

Okay, we found vulnerabilities. Now what?

These vulnerabilities need to be patched.

Patched software need to be pushed to machines.

Vulnerability
Detector

Source
Code .

.

.

Importance of Patch PropagationImportance of Patch Propagation

.

.

.

Okay, we found vulnerabilities. Now what?

These vulnerabilities need to be patched.

Patched software need to be pushed to machines.

Patches need to be pushed to related repositories.

Importance of Patch PropagationImportance of Patch Propagation

* An Investigation of the Android Kernel Patch Ecosystem

● Software Diversity: Different versions of same software.

● Code clones: Same code used in different platforms.

○ E.g., Linux code in Android, Mac OS code in iOS, etc.

Delays in Patching

* The Attack of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching

Delays in Patching

* https://www.srlabs.de/bites/android-patch-gap-2020

Different vendors have different practices and priorities.

Delay varies across different vendors.

● Propagation of security patches should be done ASAP:

○ To prevent attacker from exploiting it.

○ Ensure that products are secure.

○ To avoid negative publicity.

Security Patch Propagation

● How to manage propagation of security patches?

Security Patch Propagation

Security Patch Propagation

Security Patch Propagation

Security Patch Propagation

Security Patch Propagation

Problem 1: There could be delay in applying patches.
(E.g., Testing after applying patches)

Security Patch Propagation

Security Patch Propagation

Problem 2: Security Patches may not have an assigned
CVE number.

Security Patch Propagation

Problem 2: Security Patches may not have an assigned
CVE number.

Security Patch Propagation

Problem 2: Security Patches may not have an assigned
CVE number.

Security Patches with no CVE

Vendor 1

Vendor 2

Vendor
3

No
CVE

Security Patches with no CVE

Vendor 1

Vendor 2

Vendor
3

No
CVE

Security Patches with no CVE

Vendor 1

Vendor 2

Vendor
3

No
CVE

● They need to be requested from CVE Numbering Authorities (CNA):

○ A bit tedious approach.

○ Developers may underestimate the severity of a bug.

○ OSS : Developers raising a pull request might not care about CVEs.

How are CVE numbers assigned?

● Distributed Weakness Filing (DWF): New system for vulnerable IDs.

● What is the problem?

○ Identification of security patches is done manually by assigning CVE numbers.

○ Can we identify security patches without CVE numbers?

How can we handle this?

● Systematic approaches:
○ Analyze the patch to determine the changes done by the patch => If changes are security related then =>

Okay.

■ SPIDER => Based on syntactic analysis.

■ SID => Based on semantics.

● Pattern based or ML approaches:
○ Given a patch say that it is a security patch.

Identifying Security Patches automatically

“Verification technique to automatically identify patches (safe patches) that do not

adversely affect the functionality of the program”.

Assumption: Most of the security patches are point fixes and do not hugely affect
the program functionality.

SPIDER - Intuition

28

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

29

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

switch (input) {
 ...
 case ...
 case …
 + case NEW_INPUT: do_something(); break;
 case …
 ...
}

30

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

switch (input) {
 ...
 case ...
 case …
 + case NEW_INPUT: do_something(); break;
 case …
 ...
}

This patch might break the program on “NEW_INPUT”

31

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

● The patch should not allow new inputs into the program.

32

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

● The patch should not allow new inputs into the program.

if (a >= MAX_LEN) return -1;

33

Safe Patch Should Not Affect the Functionality

● For all expected inputs:

○ The output of the patched program should be the
same as that of original program.

● The patch should not allow new inputs into the program.

if (a >= MAX_LEN) return -1;

This is OKAY. We are restricting inputs (i.e., not allowing new inputs)

34

A Safe Patch should have:

● Non-increasing input space (C1): The patch should
not increase the valid input space of the program.

● Output equivalence (C2): For all the valid inputs, the
output of the patched program must be the same as
that of the original program.

Safe Patches Conditions

35

For all functions affected by the patch:
 if C1 and C2 holds ⇒ C1 and C2 hold for the entire

program.

Safe Patches at Function Level

36

The patch should not increase the valid input space of a
function.

In other words, All valid inputs to the patched function (Fp)
should also be valid inputs to the original function (Fo).

for all inputs i : valid_input(i, Fp) → valid_input(i,
Fo)

Non-Increasing Input Space (C1)

37

Valid Inputs to a Function

● Invalid Inputs : Inputs that are treated as invalid by the
function i.e., Inputs that reach invalid exit points.

● Valid Inputs : Inputs that reach valid exit points.

38

Valid Inputs to a Function

● Invalid Inputs : Inputs that are treated as invalid by the
function i.e., Inputs that reach invalid exit points.

● Valid Inputs : Inputs that reach valid exit points.

int foo(unsigned a) {
if (a >= MAX_SIZE) {

return -1;
}

 ..
 return 0;
}

39

Valid Inputs to a Function

All inputs that can reach valid exit points : Identify Path
Constraints (PC) through Control dependencies.

Valid Exit Point:
return 0

Inputs that can reach the
valid exit point:
PC = !(a >= MAX_SIZE)

int foo(unsigned a) {
if (a >= MAX_SIZE) {

return -1;
}

 ..
 return 0;
}

40

Valid Inputs to a Function

vinputs(f) = ∨
PC(i)

Valid inputs (vinputs) of function (f) is the disjunction (∨) of the path constraint
(PC) of all valid exit points (VEP).

i ∈ VEP (f)

41

Verifying C1 on a Function

Patched function : Fp
Original function : Fo

vinputs (Fp) ⟶ vinputs (Fo)

42

For all the valid inputs, the output of the patched function
must be the same as that of the original function.

Verifying Output Equivalence (C2)

i ∈ vinputs(fp): output(fp, i) == output(fo,i)

● Output of a function:
○ Return value.

○ Writes to non-local data, i.e., heap and globals.

○ Function calls along with the arguments.

● Changes in Error handling code does not affect
output

43

Verifying Output Equivalence (C2)

● Output Depends on the Data flow path:

44

Verifying Output Equivalence (C2)

int bar(unsigned a) {
 a = baz();

if (a < 10) {
a = b + 9;

}
 ..
 return a;
}

Data Path 1 (D1):

(a < 10) is false

● Output Depends on the Data flow path:

45

Verifying Output Equivalence (C2)

int bar(unsigned a) {
 a = baz();

if (a < 10) {
a = b + 9;

}
 ..
 return a;
}

Data Path 2 (D2):

(a < 10) is true

46

Verifying Output Equivalence (C2)

 ∀(Di, Oi) ∈ output(Fp),
 ∃ (Dj, Oj) ∈ output(Fo) ⊦ (Oi == Oj) ⋀
(Di→Dj)

int process_req(struct usr_req *req) {
 void *buf;
 size_t msg_sz;
- if(!req) {
+ if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

 return -EINVAL;
 }
 msg_sz = req->len;
 if(msg_sz % CHUNK_SZ) {

 msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
 }
 buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
 if(buf) {
- if(!req->buff) {
- return -EINVAL;
- }

 if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+ kfree(buf);

 return -EINVAL;
 }

 kfree(buf);
 return 0;

 }
 return -ENOMEM;
}

47

Is this a Safe
Patch?

Valid Inputs to Old Function

!(!(req != 0)) ^

(buf != 0) ^

!(!(req->buff != 0)) ^

 !(proc_from_user(buf +
HDR_SIZE, req->buff, req->len)
!= 0)

int process_req(struct usr_req *req) {
 void *buf;
 size_t msg_sz;
- if(!req) {

 return -EINVAL;
 }
 msg_sz = req->len;
 if(msg_sz % CHUNK_SZ) {

 msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
 }
 buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
 if(buf) {
- if(!req->buff) {
- return -EINVAL;
- }

 if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
 return -EINVAL;

 }
 kfree(buf);

 return 0;
 }
 return -ENOMEM;
}

Error Exit Points

Valid Exit Point

48

Valid Inputs to New Function

! (!(req != 0) || !(req->buff != 0) ||
req->len > MAX_MSG_SIZE) ^

(buf != 0) ^

 !(proc_from_user(buf +
HDR_SIZE, req->buff, req->len)
!= 0)

int process_req(struct usr_req *req) {
 void *buf;
 size_t msg_sz;
+ if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

 return -EINVAL;
 }
 msg_sz = req->len;
 if(msg_sz % CHUNK_SZ) {

 msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
 }
 buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
 if(buf) {

 if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+ kfree(buf);

 return -EINVAL;
 }

 kfree(buf);

 return 0;
 }
 return -ENOMEM;
}

Error Exit Points

Valid Exit Point

49

Use same symbolic variables for unaffected program
variables.

Path Constraint (Old function): (!(!(req != 0)) ^ (buf != 0) ^ !(!(req->buff !=
0)) ^ !(proc_from_user(buf + HDR_SIZE, req->buff, req->len) != 0))

vinputs (original) = (S1 != 0) && (S2 != 0) ^ (S3 != 0) ^ !(S4 != 0)

S1 S2 S3

S4

Convert Path Constraint to Symbolic Expression (Old Function)

50

Use same symbolic variables for unaffected program
variables.

Path Constraint (New function): (!(!(req != 0) || !(req->buff == 0) ||
req->len > MAX_MSG_SIZE) ^ (buf != 0) ^ !(proc_from_user(buf +
HDR_SIZE, req->buff, req->len) != 0))

vinputs (patched) = (S1 != 0) ^ (S3 != 0) ^ (S6 <= S7) ^ (S2 != 0) ^
!(S4 != 0)

S1 S3

S2 S4

S6

S7

Convert Path Constraint to Symbolic Expression (Patched Function)

51

vinputs (patched) ⟶ vinputs (original)

((S1 != 0) ^ (S3 != 0) ^ (S6 <= S7) ^ (S2 != 0) ^ !(S4 != 0)) ⟶ ((S1
!= 0) && (S2 != 0) ^ (S3 != 0) ^ !(S4 != 0))

(A ^ B) ⟶ (B)

Verifying Non-Increasing Input Space (C1)

52

int process_req(struct usr_req *req) {
 void *buf;
 size_t msg_sz;
- if(!req) {
+ if(!req||!req->buff || req->len>MAX_MSG_SIZE) {

 return -EINVAL;
 }
 msg_sz = req->len;
 if(msg_sz % CHUNK_SZ) {

 msg_sz = ((msg_sz/CHUNK_SZ) + 1) * CHUNK_SZ;
 }
 buf = kzalloc(msg_sz + HDR_SIZE, GFP_KERNEL);
 if(buf) {
- if(!req->buff) {
- return -EINVAL;
- }

 if(proc_from_user(buf + HDR_SIZE, req->buff, req->len)) {
+ kfree(buf);

 return -EINVAL;
 }

 kfree(buf);
 return 0;

 }
 return -ENOMEM;
}

53

This statement affects output but it is
in error-handling block

SID: Another systematic technique
● Based on under-constrained symbolic execution of original and patched program:

○ Determine if patch prevents a security violation which is present in the original program.
○ Based on LLVM => Requires buildable sources.
○ Better guarantees than SPIDER => Deeper reasoning.

Security Patch Identification: Requirements

● R1: In real world, we only have commit i.e., old file and new file:
○ The system should rely on only original and the patched file without additional information (e.g., commit

message, build environment, etc).

● R2: We want to identify commits quickly and the system should be easy to deploy:
○ Be fast, lightweight and scalable.

● R3: Similar to vulnerability detection : No false positives, Okay with false negatives:
○ False negatives: Misses identifying security patch => Current state.

○ False positives: Incorrectly marks a patch as security patch => Wrongly propagate the patch.

SPIDER v/s SID

Works only with old file and new file.

Syntax based: Fast, lightweight and scalable.

Overly conservative: Misses many patches.

General: Function based => works for all C source files.

Need entire build system => LLVM.

Semantic based: UC Symex, relatively slow.

Identifies most of the security patches.

Need to perform whole program analysis => Project based.

SPIDER SID

● Intuition: Security patches have distinguishing features.
○ Can we use these features to identify security patches automatically?

Pattern Based or ML approaches

● Security patches are relatively small!!

Characteristics of security patches!

* A Large-Scale Empirical Study of Security Patches

● Security patches have a specific format!

Characteristics of security patches!

* Precisely Characterizing Security Impact in a Flood of Patches via Symbolic Rule Comparison

● Need dataset.

● Feature engineering:

○ Code features

○ Metadata features:

■ Num of files, functions, words in commit message, etc.

ML Based Detection

● Need dataset => Start from initial dataset , build a model and generate more..repeat.

● Feature engineering:

○ Code features: Num of pointers modified, if/else, loops, sizeof, etc

○ Metadata features: Words in commit message.

Security Patch Detection by Co-training

* Learning to Catch Security Patches

● Initial Dataset

Security Patch Detection by Co-training

* Learning to Catch Security Patches

● Co-training

Security Patch Detection by Co-training

* Learning to Catch Security Patches

Patch Propagation: Final Remarks

● Very important, yet ignored problem.

● Practicality is very important => Implement your technique as a GitHub Webhook.

● Should have almost no false positives.

● Mailing lists => Unexplored area!

